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Since neither time nor space will allow me to cover all that the title above encompasses, I have chosen
to focus on selected aspects of the work of Shewhart and Deming and to discuss how these compare with
a common element of various six-sigma programs. To this end I will begin with a look at the concept of
an operational definition, then turn to what it takes for improvement. This will lead to a distinction
between observational studies and experimental studies. Finally I will look at the basic element of
virtually all six-sigma programs in the light of the earlier material.

An Operational Definition
In the pre-publication drafts of Quality, Productivity, and Competitive Position Dr. Deming wrote:

“An operational definition consists of (1) a criterion to be applied to an object or a
group of objects, (2) a test of compliance for the object or group, and (3) a decision rule
for interpreting the test results as to whether the object or group is, or is not, in
compliance.”

This definition closely parallels Dr. Shewhart’s opening statement for his (1939) book Statistical
Method from the Viewpoint of Quality Control:

“Broadly speaking there are three steps in a quality control process: the specification of
what is wanted, the production of things to satisfy the specification, and the inspection of
the things produced to see if they satisfy the specification.”

This idea of an operational definition, which Shewhart and Deming popularized from the work of the
philosopher C. I. Lewis, provided the seed for what grew into the Shewhart or PDSA Cycle. While the
Plan-Do-Study-Act Cycle does form a powerful framework for any improvement effort, it has often been
reduced to a checklist to be followed mechanically. This has led to a proliferation of “expanded” PDSA
cycles where each of the steps on the checklist are specified in ever increasing detail. But before we go
down this path, I would like to back up and generalize a bit.

In Dr. Deming’s own conversations, when individuals would start telling him about what they or
their organization were planning to do, he would invariably have one of two responses for them: “By
what method?” or “How will you know?” Either one of these questions would generally end the
conversation since the individual would have no answer. After discerning this pattern to Dr. Deming’s
responses, it finally occurred to me that these two questions corresponded to the last two parts of an
operational definition. This realization, in turn, resulted in a generalization of an operational definition to

become:
(1) What do you want to accomplish?
(2) By what method will you accomplish it?

(3) How will you know when you have accomplished it?
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Whatever you may be doing, until you can answer all three of these questions, you do not have an
operational definition but merely a basis for an argument. Shewhart understood this, and in his work he
used the concept of an operational definition in the development of the “operation of statistical control.”
In fact, a process behavior chart, what Shewhart called a control chart, is an operational definition, as
Shewhart explains in the opening paragraph of Statistical Method:

“Corresponding to these three steps there are three senses in which statistical control [i.e.
process behavior charts] may play an important part in attaining uniformity in the quality of
manufactured product: (a) as a concept of a statistical state constituting a limit to which one may
hope to go in improving the uniformity of quality; (b) as an operation or technique of attaining

uniformity; and (c) as a judgment.”

On page 25 of Economic Control of Quality of Manufactured Product Shewhart had already written that
“This state of control appears to be, in general, a kind of limit to which we may expect to go economically
in finding and removing causes of variability without changing a major portion of the...process.” Thus,
we see that Shewhart was focused on how to operate a process economically with maximum uniformity.
To paraphrase this, we could say that the process behavior chart is an operational definition of how to get
the most out of any process.

With regard to the first question we might respond that we would like to operate our process up to its
full potential. But what is its full potential? The three-sigma limits of a process behavior chart
characterize the potential of your process. They define what a predictable process will do, and they
approximate what an unpredictable process can be made to do. These limits approximate the ideal of
what your process can achieve when it is operated with maximum consistency.

But what methodology will allow us to operate at full potential? The running record on the process
behavior chart displays the actual process performance. By highlighting those exceptional values where
the process performance is inconsistent with the process potential the process behavior chart gives you
points to investigate. As you take advantage of these opportunities you can move your process closer to
its full potential. Thus the process behavior chart provides you with a procedure that you can use to
improve your process.

And how will you know when you are operating at full potential? The combination of both the
process potential and the process performance on a single chart allows you to make a judgment about how
close to the ideal your process is being operated.

Hence, the process behavior chart is an operational definition of how to get the most out of your
process. It approximates the ideal, provides a method of attaining that ideal, and gives a way to judge
how close you have come to that ideal. It is instructive to compare this complete package with other

approaches to improvement.

What It Takes for Improvement

For any given product characteristic or process outcome, there will be dozens, if not hundreds, of
cause-and-effect relationships which affect that one characteristic. Any attempt at improvement will
require that we address this list of cause-and-effect relationships. Fortunately, in order to produce a
consistent product stream, we do not usually need to control all of these cause-and-effect relationships.
This is because each of the causes will not all have the same effect upon the product characteristic. Some

causes will result in large amounts of variation in the product characteristic, while other causes will result
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in small amounts of variation in the product characteristic. Consequently, our typical model for systems
of cause-and-effect relationships is the Pareto principle.

The three sigma limits of a process behavior chart
1100 characterize what your process can be made to do.
1000
900
800 They approximate the IDEAL of what your process can achieve
when it is operated with maximum consistency.
Figure 1: What do you want to accomplish?
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gives you points to investigate and, thereby, provides
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Figure 2: By what method?
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about how close to the IDEAL your process is being operated.

Figure 3: How will you know?
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This tendency of Cause Systems to satisfy the Pareto principle does simplify the complex problems of
production. In order to make a product we will need to select and control only those factors having a
dominant effect upon a given characteristic. We can then ignore the remaining factors. While these re-
maining lesser causes will create some small amount of product variation, it will be negligible if we
correctly identify the dominant causes. In Figure 4, the first four factors account for 78% of the total
impact of all 21 factors.

Effect of each factor upon
the product characteristic

1 2 3 4 5 6 7 8 9 1011 12 13 14 1516 17 18 19 20 21

Factors that have an effect upon the product characteristic
Figure 4: An Underlying Cause System

However, once you have taken care of the dominant causes, you will quickly reach a point of
diminishing returns. While the remaining causes will have lesser effects, the effort to nullify these lesser
causes will usually be on a par with the effort to nullify the dominant causes. Thus, at some point, it is no
longer worth the effort to continue to counteract the lesser causes. In Figure 4, while the first four factors
account for 78% of the variation, Factors 5, 6, 7, & 8 account for only 9% of the variation. Because of these
diminishing returns we need to have some way to properly separate the dominant causes from the lesser
causes. Controlling the dominant causes will have a high payback, while efforts to control the lesser
causes will have a low payback.

So how do we identify these high-payback causes? In an experimental approach it is usually done by
a combination of guesswork, experience, and research. The problem is to identify those cause-and-effect
relationships that we need to control in practice, so we begin with a list of the known and expected
causes. Since this list will usually include more causes than we can possibly investigate, we will trim this
list by ranking these causes according to what we think their impact will be and discarding those causes
thought to have the smaller effects. Then we carry out experiments with the reduced list in order to (a)
identify those causes with the dominant effects and (b) determine which levels of these dominant causes
will yield a product with the desired characteristic.

The end result of this process is a set of control factors—those causes which we think have the greatest
impact upon our product characteristic. In production we will hold the levels of these control factors
constant. At the same time, we will, of necessity, ignore the remaining cause-and-effect relationships—
after all, we did not find them to have dominant effects, so they are relegated to the group of lesser
causes.

Figure 5 shows a list of 21 factors that were thought to have an impact upon Product Characteristic
No. 2. These 21 factors had been arranged in what was thought to be the order of descending impact.
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Since 21 factors were too many for R&D to consider, they decided to evaluate the top ten factors.

While all 10 factors had an effect upon this characteristic, their effects were not all the same size.
Factors 5, 1, and 7 were found to have the dominant effects. Thus, Engineering told Manufacturing that
they would need to carefully control the levels of Factors 5, 1, and 7 in production. Except possibly for
Factor 4, all other factors were thought to have a minimal impact upon this characteristic and, therefore,
could be ignored in production.

N

N

Factors studied by R&D Factors not studied by R&D

Not enough time,
not enough money
to investigate
all factors

Effect of each factor upon
Product Characteristic No. 2

1 23 45 67 89101112131415161718 192021 &
Factors thought to have an effect upon Product Characteristic No. 2

Figure 5: Experiments Always Exclude Some Factors

The production process was then set up using Factors 5, 1, and 7 as control factors for Product
Characteristic No. 2. At the start of production they immediately had problems with too much variation
in Product Characteristic No. 2. Because this resulted in a high scrap rate they decided to add Factor 4 to
the set of control factors. It didn’t help. As they fell further and further behind the production schedule,
and as the mountain of scrap increased, they began to talk about the “skill” that it took to make this
product. Words like “art” and “magic” were used. Inspection and rework facilities were expanded, and
soon the production department had settled down to what Deming called the “Western approach to
production: burn the toast and scrape it.”

Factors 1, 4, 5, and 7 are controlled during production
A so all of the product variation comes from the remaining factors

Effect of each factor upon
Product Characteristic No. 2

e | ] W
1 234567 8 9101112131415161718 192021 &
Factors that have an effect upon Product Characteristic No. 2

Figure 6: Why can’t we make good stuff?
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The most common reason for this scenario is seen in Figure 6. While some of the dominant factors
were properly identified, others were missed. While the manufacturer was unaware of the impact of
Factors 14 and 16, the process continued to be under their influence. Since Factors 14 and 16 had not been
studied, and were thought to be part of the lesser causes, the manufacturer was not exerting any control
over the levels of these factors. Yet, in the course of events, when the levels of either one of these factors
changed it would cause a corresponding change in the product characteristic. While the manufacturer
remained unaware of Factors 14 and 16, he suffered the consequences of their effects.

Here, the problem does not come from an inability to control Factors 5, 1, and 7. It is instead due to
the fact that Factors 14 and 16 are not part of the set of control factors. Shewhart called these dominant
but uncontrolled factors Assignable Causes. Deming called them Special Causes. The lesser causes of
Figure 7 were called Chance Causes by Shewhart and Common Causes by Deming.

A Control
_ Factors _ _ All Remaining Factors (Uncontrolled Factors) -
— Assignable
] Causes

Eesser-Causes

Effect of each Factor upon
Product Characteristic No. 2

5 17 41416131220 8 11182110 6 17 2 9 3 1519 &
Factors that have an effect upon Product Characteristic No. 2

Figure 7: Three Categories of Factors

Thus we have Control Factors, Assignable Causes, and Lesser or Common Causes. Since the levels of
the Control Factors are fixed, they contribute little or no variation to the product characteristic. When we
place a factor in the control group, we essentially remove it as a source of process variation. Therefore,
effort spent trying to fine tune the Control Factors will be of marginal benefit as long as there are Assignable Causes
present. It does not matter what levels of Factors 5, 1, and 7 we choose as long as we are doing nothing
about Factors 14 and 16! You cannot optimize any system when some of the dominant cause-and-effect
relationships remain unidentified. So while experimental studies can be used to identify dominant cause-
and-effect relationships, their effectiveness depends on the choices illustrated in Figure 5. For this reason,
any approach to improvement that is based solely upon experimental studies is inherently flawed and
incomplete.

Since the group of Assignable Causes will contain all of those dominant causes that are not in the set
of Control Factors, this group will be the source of most of the unexplained variation in the product. In
Figure 7, Factors 14 and 16 account for almost 60 percent of the remaining variation. Assignable Causes
are those factors that give managers gray hair and ulcers. This group is the major contributor to excess
costs of production, low quality, scrap, and rework. Therefore, effort spent in identifying Assignable
Causes and making them part of the group of Control Factors will generally have a very high payback.

Finally the group of Common Causes will be the source of the run-of-the-mill, routine variation that
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is always part of the background of all production processes. Effort spent trying to control the Common
Causes will, at best, yield small returns, and will usually be effort wasted.

It is important to note that whenever we identify a dominant cause-and-effect relationship, and then
make that cause a member of the set of Control Factors, we will remove a source of variation from the
process. This means that the dominant causes discovered in the R&D phase will result in reduced
product variation. However, a partial understanding of which factors are dominant will only result in a
partial reduction of variation. And every R&D effort is limited by the ability of the researchers to identify
the key factors in advance. Whenever we decide to conduct an experiment there will be some factors that
we choose to study, and there will be other factors that we choose to leave out of the study. These
excluded factors may be held constant, or randomized, or ignored, but since they are not studied their
impact remains unknown. Whenever a dominant cause ends up being held constant, or randomized, or
ignored, your experiment can only give you a limited and partial understanding of your process.

However, in spite of your understanding of which factors are dominant, your process will always be
subject to the effects of all of the Uncontrolled Factors. When the set of Uncontrolled Factors contains
Assignable Causes your process will suffer the consequences. Therefore, since Experimental Studies will
always be limited in scope, we will also need the ability to conduct Observational Studies.

Observational and Experimental Studies

Observational studies are studies where the data are obtained as a by-product of some ongoing
operation. These data may be deliberately and intentionally collected, but they are still a by-product of
some process while that process is being operated in an ordinary manner. In other words, in an
observational study, the data track the process.

On the other hand, experimental data are collected under special conditions where those different
conditions are created for the express purpose of obtaining the data. Experimental studies will always
result in a fixed amount of data, collected under different conditions, while observational studies will
result in ongoing streams of production data, usually collected while the known inputs (the control
factors) are held constant.

Because experimental data are collected under special conditions, they tend to be more expensive
than observational data. Moreover, because of the way they are obtained, we expect experimental data to
represent the differences between the special conditions. Thus, when we analyze experimental data we
are looking for differences that we have paid good money to create and that we believe are contained
within the data. Moreover, the fact that we will have to conduct more experiments if we can not find the
expected differences will tend to make us choose a less conservative, and more exploratory, analysis for

our experimental data.

Table 1: Observational Studies vs. Experimental Studies

Observational Studies Experimental Studies
Additional Data Available Fixed Amount of Data
One Condition Present Two or More Conditions Present
Should Be No Signals Should Be Some Signals
Sequential Analysis Procedure All Data Analyzed at One Time
Conservative Analysis Used Traditional or Exploratory Analysis Used
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When analyzing data from an observational study, the fact that the data were supposedly collected
under one condition will mean that we do not expect to find any differences within the data.
Furthermore, since any differences that do occur will often indicate unplanned changes in the process, we
will want to be sure about any differences we find. Since additional data will usually be available, we can
afford to play a waiting game with observational studies. The limits on a process behavior chart provide
a conservative analysis for each new point added to the chart. Therefore, when a point goes outside these
three-sigma limits we will have strong evidence that the process has changed before we take action.

As seen in Figure 8 there are several different analysis techniques that can be used with experimental
studies, while some techniques may be used with either type of study.

Observational Studies Experimental Studies

Analysis of Means

Average &
Range
Charts

Average and Range Charts
(used as Process Behavior Charts)

XmR
Charts

Individual & Moving Range Charts
(used as Process Behavior Charts)

Analysis of Variance

Figure 8: Analysis Techniques for Observational and Experimental Studies

The Individual Value and Moving Range Chart (XmR Chart) and the Average and Range Chart were
created for use with observational studies. When they are used in this way they may be said to be
“Process Behavior Charts.” They allow us to identify Assignable Causes of exceptional variation such as
Factors 14 and 16, so that we can move them from the set of Uncontrolled Factors to the set of Control
Factors, and thereby reduce the variation in the product stream.

Where Should We Start?

Given that we now have two different ways to identify the dominant cause-and-effect relationships in
our process, should we start with experimental studies or observational studies?

While it is possible to experiment with unpredictable processes, it is complex and difficult to do so.
Experimentation is much more effective when all of the dominant factors are included in the study.
Therefore, the simplest, easiest approach to process improvement has proven to be that of the
observational study. By taking advantage of the ability of an observational study to identify the
unknown but dominant factors that are lurking around most processes you can quickly improve both the
process and the process outcomes. Moreover, these improvements rarely require capital expenditures.
To this end, process behavior charts provide an operational definition of how to get the most out of any
process. Once you have done this, then further improvements are rarely needed. By taking advantage of
the opportunities presented by a process behavior chart it is possible to cut the process variation in half,
or even more. Shewhart provided examples of cutting the variation in half in Economic Control of Quality.
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My own clients have given me examples where the process variation was reduced to one-third, one-
fourth, and even one-fifth of what it had been originally. The observational approach has a proven track
record.
However, if you should need to further improve a process that you are currently operating at
maximum consistency, then experimental studies will be both more appropriate and more effective.
While this sequence of observation followed by experimentation has been validated by decades of
success, it is not what is being currently taught in either schools or industry.

Six Sigma and the Tooth Fairy

There are many different programs being taught and used today under the general heading of “Six-
Sigma.” Virtually every Six Sigma program is built upon the idea of using improvement projects to
achieve breakthroughs to new levels of quality and savings. Implicit in this approach is the idea that
every process needs to be reengineered. And the model for this reengineering is the DMAIC model
(Define, Measure, Analyze, Improve, & Control). While different books have different DMAIC models,
these models all have one thing in common—whatever the problem, the answer is assumed to consist of
changing the process in some fundamental way. No DMAIC model that this author has seen considers
what can be done by operating the current process up to its full potential. In fact, most Six Sigma models
do not make any distinction between processes that are operated predictably and processes that are
operated unpredictably. They simply assume that by incorporating a mythical 1.5 standard deviation
buffer zone they can make the problem of unpredictable processes go away. Consequently, these models
perform all their computations under the unrealistic and unjustified assumption that processes are
magically going to operate within this buffer zone. Of course, all of our experience since the time of
Shewhart has shown that this simply does not happen. Predictability is an achievement. Consistency is
not a natural state for any production process.

Thus, the first major flaw in the DMAIC models is their failure to investigate what can be
accomplished by operating the current process up to its full potential. Since experience has shown that
the predictable operation of your current process will generally cost little or nothing, this is the cheapest
type of improvement possible. Capital expenditures are seldom required. Moreover, operating
predictably and on target will frequently allow you to operate in the economic zone, making further
improvements unnecessary. However, the published DMAIC models all seem to miss this particular
piece of low-hanging fruit.

The second problem with the DMAIC models is their implicit assumption that all processes need to
be reengineered. While reengineeering is sometimes needed, it is never cheap. If you do not know what
can be accomplished by operating the current process predictably and on target, how can you know if
you actually need to reengineer the process?

The third problem lies with the assumption that you can identify the appropriate inputs to study.
Returning to the argument outlined earlier, it is very difficult to conduct experiments when we have yet
to identify all of the dominant factors. When a process is operated unpredictably it is subject to the effects
of unknown, dominant Assignable Causes. If you try to conduct experiments without identifying the
Assignable Causes, your results will be of limited validity and dubious utility.

Moreover, in the absence of a systematic way of learning from the existing process, many of the
machinations of the DMAIC model exist solely in order to identify which inputs to study. These steps
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add complexity in order to achieve that which can be more easily done using process behavior charts.

Finally the DMAIC models assume that, even though you have given no thought to the support and
operational discipline required to operate your current process predictably, you will be able to magically
operate the new, upgraded process predictably. Unfortunately, all of our experience with process
upgrades tells us otherwise. If you cannot operate your current process, whose idiosyncrasies you know,
up to its full potential, then how will you learn how to operate a new process, with new idiosyncrasies,
up to its full potential?

Operating a process predictably requires a learning organization—one where knowledge is both
gained and shared. It is more a matter of practicing a way of thinking than it is a matter of having the
right technique. Without the practice in the way of thinking, simply sticking a control chart on a new
process and throwing it over the wall to production will not result in predictable operation.

Every time I read a description of a DMAIC model I cannot help but recall the “Thought Method”
used by Professor Harold Hill to teach music in The Music Man—"if you just think of the notes you want
to hear, you will be able to play them.” In a similar manner DMAIC models require a lot of steps up front
to help you think of those factors that you need to study. You have to make the effort to figure out what
your process needs. In contrast to all this elaborate warm-up and mental effort, process behavior charts
let the process itself identify those things that need to be investigated.

In short, there is nothing wrong with a DMAIC model that cannot be remedied by using process
behavior charts at each step in the DMAIC model. Process behavior charts will help you to define which
processes are not operating up to their full potential. Process behavior charts are unsurpassed when it
comes to measuring what the process is doing. Process behavior charts provide a basis for analyzing how a
process is operating. Process behavior charts identify opportunities for process improvements. And
process behavior charts give us a way to continue to operate a process up to its full potential in the future
(i.e. to control it). Hence we can transform the complexity of the DMAIC models into a very simple and
straightforward process of continual improvement by using process behavior charts.

“But wait,” you might say. “What about all the progress that has been made using DMAIC models?”
The fact that so much progress has been reported is either a tribute to the ability of the Six Sigma
practitioners to identify things that have escaped the notice of previous generations of process engineers,
or else it is a commentary on how completely disorganized everyone was to begin with. Since the statisti-
cal and organizational tools of Six Sigma do not bring new subject matter knowledge to the table, I will let
the reader decide which of these two alternatives is the most likely explanation.

Summary

If we listen to, and learn from, the process data, then we can develop a more complete understanding
of our process, and as a result we can operate it more profitably. Therefore, we need to use a technique
that will:

e Allow us to learn from our process data;

* Warn us when our process changes;

e Help us to identify the causes of those changes; and

* Enable us to operate our process predictably and on target.

Process behavior charts do all of these things. They complement and complete any R&D program,
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and they provide an essential foundation for any process improvement effort. The alternative to their use
is nothing less than complete and total chaos.

Shewhart and Deming gave us a holistic approach to the problem of process improvement. Others,
who had experience with experimental studies but lacked experience with observational studies, have
come along and put together a package that uses some of the elements of Shewhart and Deming, but with
a narrowed focus and a flawed model. In Deming’s own words, if you spend your life working on

projects seeking breakthroughs “you will never run out of things to do.”

Appendix: Four Myths About Special Causes

Walter Shewhart described the routine variation that characterizes a process that is operated
predictably as being the result of many cause-and-effect relationships where no one cause has a dominant
effect. He called such causes of routine variation Chance Causes since the resulting routine variation was
indistinguishable from random phenomena like radioactive decay and Brownian motion. However,
when a single cause-and-effect relationship began to have a dominant effect over the other causes it
would become an Assignable Cause. Thus, in Shewhart’s view, the only difference between a Chance
Cause and an Assignable Cause was the magnitude of their effects, and the process behavior chart was
the tool Shewhart created for separating the Assignable Causes from the Chance Causes.

Moreover, in Shewhart’s work it was clear that some Assignable Causes would be outside the realm
of those things that could be controlled by the manufacturer, while other Assignable Causes would be
within the sphere of things that the manufacturer could control. Effort expended to remove the effects of
an Assignable Cause that is outside the system will not improve the system itself, but it can prevent
excessive variation in the process outcomes. However, effort expended to remove the effects of an
Assignable Cause that is inside the system will improve both the system and the consistency of the
process outcomes. This leverage for process improvement provided by the process behavior chart is
clearly demonstrated throughout Shewhart’s Economic Control of Quality of Manufactured Product, and it
has been verified countless times since then.

However, since few manufacturers want to leave things to chance, the use of the term “Chance
Causes” to refer to the sources of routine variation was rather unfortunate. To remedy this W. Edwards
Deming talked about Common Causes and Special Causes. His stated intention was simply to change the
names. In Dr. Deming’s words, “A Special Cause is an Assignable Cause and an Assignable Cause is a
Special Cause.” Moreover, in Out of the Crisis Deming wrote: “It is a hazard to use judgment to distin-
guish between special causes and common causes.”

Nevertheless, as a result of Dr. Deming’s discussion about who is responsible for dealing with Special
Causes and Common Causes, many have come to believe four misconceptions regarding Special Causes:

Myth 1. Special Causes are always external to the system.
Myth 2. Special Causes always have a marginal impact.
Myth 3. The removal of Special Causes will only restore the status quo.

Myth 4. Because of Myth 1, you can tell the difference between a Special Cause and a
Common Cause by whether or not it is part of the system. (Which is precisely the
type of judgment call that Deming was warning against.)

Example after example has been provided in both Shewhart’s books and in the various books by this
author of how some Assignable Causes are within the manufacturer’s sphere of control. Deming even
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states that “Some Special Causes can be removed only by management.” [Out of the Crisis, p.320.] Thus
any argument that Special Causes are always external to the system is in conflict with both Shewhart and
Deming.

Time after time those who have used process behavior charts have reported dramatic reductions in
the variation of the process outcomes. Reductions of 50% are common while three-, four-, and five-fold
reductions in process variation are not at all unusual. One client reported a 67% reduction while he still
had signals of exceptional variation present! Anyone who considers such reductions in variation as
“marginal” has never worked in production.

On page 21 of Economic Control of Quality Shewhart shows the two Average Charts that are
reproduced in Figure 9. These two charts reveal the impact of the removal of Assignable Causes. The
removal of the Assignable Causes did not simply remove the points outside the limits, but it also resulted
in limits that were half as wide as the initial limits. Thus, the removal of Assignable Causes does not
merely restore the status quo, but can take your process to new levels of consistency.
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Figure 9: The Effect of Removing Special Causes of Exceptional Variation

Thus, the four myths about Special Causes listed above are patently not true. They are inconsistent
with the concepts behind the process behavior chart and they are in conflict with over seventy years of
experience. If any of these four myths summarize your understanding of Deming’s teaching, then you
need to read Deming again, and possibly Shewhart as well.

The process behavior chart is the operational definition of a Special, or Assignable, Cause. There is
no other definition. Special Causes are those cause-and-effect relationships that dominate the routine
variation. As a result, it will be economical to seek to identify and exert control over any Special Cause
identified by a process behavior chart. On the other hand, seeking to exert control over Common Causes
of routine variation will always be a low payback strategy.

Any discussion of whether or not a Special Cause is inside or outside of the system is irrelevant.
Moreover, any discussion of who is responsible for dealing with Special Causes is irrelevant—a Special
Cause is the responsibility of whoever is in a position to do something about it. Special causes represent
opportunities for improvement. Common Causes do not.

Portions excerpted from The Six-Sigma Practitioner’s Guide to Data Analysis © 2005 SPC Press and EMP III © 2006 SPC Press.
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